ESTIMATION OF BUS TRAVEL ORIGIN-DESTINATION MATRIX ON A CORRIDOR USING SCREENLINE COUNTS

Saman J. WIDANAPATHIRANAGEa and Amal S. KUMARAGEb
aRoad Development Authority, Battaramulla, Sri Lanka
bDepartment of Civil Engineering, University of Moratuwa, Moratuwa, Sri Lanka

ABSTRACT

The development of a travel origin-destination (O-D) matrix is fundamental to transport planning studies and a valuable common input for all key activities from planning to management of transport. The O-D matrix describes the pattern of travel movements between a set of origins and destinations in a transport corridor or region. The development of an O-D matrix requires a large database of travel survey information. Bus passenger travel origin-destination matrices are particularly difficult to make, specially where there is no regular practice of ticketing, and when buses are overcrowded due to deficiency of seating supply. Alternatively, household surveys could be used to develop an O-D matrix, but these require considerable resources. Therefore, the compilation of travel O-D matrices for transport planning studies is rare.

This study was conducted in a busy corridor of public transportation in the Colombo metropolitan region in Sri Lanka. The O-D matrix is formulated from the screenline counts and has been validated. The verification showed the percentage level of error of most inter-zonal travel estimates is below 15 percent. Also, the matrix is used to find out the operational parameter of the bus routes such as the average trip length between any two zones.

1. INTRODUCTION

The origin-destination (O-D) matrix or table is valuable key information, which illustrates the pattern of transport activities between two travel zones. The collection and analysis of data for the development of an O-D matrix involves much time and money. However, much less time and resources are required where there is a regular ticketing system. The lack of such a system in bus travel is one drawback which could be highlighted as a reason for the non-availability of O-D travel matrices in most developing countries: Sri Lanka is no exception.

The development of an O-D matrix from screenline counts, such as passenger loading, boarding, and alighting is less time-consuming and costs less money. In travel markets where there is a constraint of seating supply, the counting of passengers becomes difficult because buses are overloaded most of the time. In such a situation, these screenline counts are useful for formulating an estimated O-D matrix. This is used to find out the operational parameters of a bus route such as, its transit capacity, estimation of passengers’ travel distance etc.

1.1 The Study Area

The transport corridor selected for this purpose runs through one of the most economically active areas in Sri Lanka. The area covers an extent of 248 hectare of land with a population of 1.66 million. (Nanayakkara, 2001). The corridor covers a total distance of 60 kms along the western
coast from Colombo to Beruwala as shown in Figure 1. It also crosses six local administrative areas that are called Divisional Secretariat Divisions, referred to in this paper as “travel zones”. Thus, the study area includes six travel zones, viz., Colombo, Dehiwala, Moratuwa, Panadura, Kalutara, and Beruwala, which are all within the southern end of the Colombo Metropolitan Region.

A central bus stand is located in each zone, with a number of bus halts along the corridor for easy access to buses plying this corridor. There are a total of 15 trunk bus routes and eight feeder bus routes connecting these zones. All these bus routes ply on this corridor making a total of 3,950 bus trips per day in both directions. Many business establishments, universities, industries, government institutions, residential areas, and an airport are located within this transport corridor. This means that there is a larger volume of economic activity taking place within this transport corridor, than in other parts of the Colombo Metropolitan Region.

1.2 Bus Travel Network

The selected transport corridor is part of the Colombo – Galle Road which is a primary trunk road that starts from Colombo and runs southwards through all the selected traffic zones. There is mixed traffic flow at present, of which 10 per cent are buses. The average headway of buses is around 2.0 minutes, with a minimum of one minute closer to Colombo and around three minutes closer to the southern end of the corridor at Beruwala. Many secondary roads are connected to the Colombo- Galle Road at several locations. Each such secondary road also has bus services which transfer large numbers of bus passengers from the adjacent traffic zones to the zonal nodes within this transport corridor.
1.3 Literature Review

The available literature has paid little attention to the estimation of origin-destination matrices from screenline data. Most O-D matrices are developed using roadside interview-based travel patterns from traffic counts (Zuylen and Williamson, 1980; Bell, 1991). However, Wong and Tong (1998) developed O-D matrices from passenger boarding and alighting counts. Mondon and Hess (2003) used bus boarding and alighting counts to investigate pedestrian safety and transit corridor capacity. But these studies have not considered the constraint of passenger overloading for the estimation of O-D trips, as dispatched bus ticket information is available at the time of study. In this paper, bus passenger loading counts were considered together with boarding and alighting counts to avoid the limitation that could arise by counting bus passengers based on ticketing due to non-issuance of bus tickets by private bus operators. The Government owned bus companies issue bus tickets but they represent only 30 percent of the total inter-zonal bus supply.

2. OBJECTIVES AND METHODOLOGY

The aim of this paper is to present (a) the theoretical approach and form for developing a bus passenger O-D travel matrix from screenline data and (b) the validation and (c) the application of this theoretical approach to formulate an O-D matrix for the travel corridor selected.

2.1 Data Collection

Two sets of data were collected for this research. The first set included a sample of bus boarding and alighting observations collected along the corridor for each of the inter-zonal bus routes. The 15 bus routes were identified by the study by observing several bus halting places, which were located along the corridor. These were located approximately at equal distances along the route. By assuming that most of the bus trips are round trips, and that the passengers board the bus for their return trip at about the same place where they get-off, Navick and Furth (2002), stated that the boarding pattern for a route in one direction is equivalent to the alighting pattern in the opposite direction over the course of the day. Therefore, the place where a passenger alights from a bus is most likely to be the same or can be considered as being very close to the place where passenger got on to the bus for the return trip. Therefore, it was assumed that the corridor demonstrates a regular pattern of passenger boarding and alighting. The boarding and alighting counts on all these routes were collected on-board the buses by trained enumerators, who made a total of 90 enumerator trips, with at least three round trips per route. The counts were made for each stop along the corridor during 13 hours of a weekday, starting at 06.00 hours and ending at 19.00 hours which covered both peak period as well as off-peak travel patterns.

In the second set of data, roadside (screenline) bus loading data were collected by manual observation at selected strategic points along a route so that the maximum number of bus routes could be observed at these screenlines. The screenline occupancy survey of bus passengers was somewhat difficult as these routes usually have large numbers of standing passengers, and also because the sizes of buses vary making estimation difficult. To overcome this problem, an estimation matrix was developed so that the number of passengers could be estimated based on the size of the bus, and the level of loading, both of which were easier to observe against pre-counted passenger occupancy in buses of various sizes as shown in Table 1 below.
Table 1. Passenger Occupancy in Buses

<table>
<thead>
<tr>
<th>Bus Size</th>
<th>Mean Passenger Load by Level of Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Empty</td>
</tr>
<tr>
<td>< 20 Seats</td>
<td>2</td>
</tr>
<tr>
<td>20-29 Seats</td>
<td>4</td>
</tr>
<tr>
<td>30-39 Seats</td>
<td>5</td>
</tr>
<tr>
<td>Over 40 Seats</td>
<td>6</td>
</tr>
</tbody>
</table>

2.2 Theoretical Formulation of O-D Matrix

In developing a general approach to formulate an O-D matrix from screenline data, it is assumed that there are n number of traffic zones across which a bus operates on a given route or corridor. The inter-zonal travel demand from origin to destination \(ED_{OD}^{(n-1)} \) at the end of zone \((n-1)\) is illustrated in Figure 2. In this estimation, it was assumed that the roadside loading observation point (LOP) was situated ahead of the zonal boundary.

Where,

\[
LD_{OD}^{(n-1)} = \text{The total bus passenger loadings observed at a roadside loading observation point located within (n-1)th zone from origin o to destination d.}
\]

\[
ED_{OD}^{(n-1)} = \text{The inter-zonal bus passenger demand between the (n-1)th zone and nth zone from origin o to destination d.}
\]

\[
B_{OD}^{(n-1)} = \text{Bus passenger boarding in the (n-1)th zone from roadside observation point (LOP) to the zonal boundary (ZB n-1) from the direction of origin o to destination d.}
\]

\[
A_{OD}^{(n-1)} = \text{Bus passenger alighting in the (n-1)th zone from roadside loading observation point (LOP) to the zonal boundary (ZB n-1) from origin o to destination d.}
\]

\[
\sum_{k=1}^{n-2} B_k^{OD} + B_{OD}^{(n-1)} = \text{The cumulative bus passenger boarding up to the roadside loading observation point (LOP).}
\]
\[\sum_{k=1}^{n-2} A_k^{OD} + A_{n-1}^{OD} = \text{The cumulative bus passenger alighting up to the roadside loading observation point (LOP).} \]

The first step is to calculate the difference between the cumulative passenger boarding and the cumulative passenger loadings. It is determined by the inter-zonal passenger travel (IPT) between the \((n-1)\)th zone and the \(n\)th zone given in equation (1) which estimates the average number of bus passengers who would be travelling across the \((n-1)\)th zonal boundary \((ZB_{n-1})\) when a bus moves from origin \(o\) to destination \(d\).

\[
IPT_{n-1}^{OD} = \sum_{k=1}^{n-2} B_k^{OD} - \sum_{k=1}^{n-2} A_k^{OD} + B_{n-1}^{OD1} + B_{n-1}^{OD2} - A_{n-1}^{OD1} - A_{n-1}^{OD2} \tag{1}
\]

In estimating the total passenger demand at the \((n-1)\)th zonal boundary \((ZB_{n-1})\), further adjustments are required to estimate the number boarding and alighting between the roadside loading observation point (LOP) and the boundary. This can be given by equation (2).

\[
ED_{(n-1)}^{OD} = \left[1 + \left(\frac{B_{n-1}^{OD2} - A_{n-1}^{OD2}}{\sum_{k=1}^{n-2} B_k^{OD} - \sum_{k=1}^{n-2} A_k^{OD} + B_{n-1}^{OD1} + B_{n-1}^{OD2} - A_{n-1}^{OD1} - A_{n-1}^{OD2}} \right) \right] \ast LD_{(n-1)}^{OD} \tag{2}
\]

Similarly, equation (3) is derived to estimate the total inter-zonal passenger demand at the same boundary when travelling from destination zone \(d\) to origin zone \(o\). In this estimation, it was assumed that the roadside loading observation point (LOP) was situated ahead of the zonal boundary.

\[
ED_{(n-1)}^{DO} = \left[1 - \left(\frac{B_{n-1}^{DO2} - A_{n-1}^{DO2}}{\sum_{k=1}^{n-2} B_k^{DO} - \sum_{k=1}^{n-2} A_k^{DO} + B_{n-1}^{DO1} + B_{n-1}^{DO2} - A_{n-1}^{DO1} - A_{n-1}^{DO2}} \right) \right] \ast LD_{(n-1)}^{DO} \tag{3}
\]

For this type of arrangement the generalized form of origin to destination travel matrix for the given bus route can be illustrated as:

\[
\begin{bmatrix}
T_{11} & T_{1n} \\
T_{21} & T_{2n} \\
\vdots & \vdots & \vdots & \vdots \\
T_{(n-1)1} & T_{(n-1)n} \\
T_{n1} & T_{nn}
\end{bmatrix}
\begin{bmatrix}
0 & \alpha_{12}ED_1^{OD} & \ldots & \alpha_{1(n-1)}ED_{(n-1)}^{OD} & \alpha_{1n}ED_n^{OD} \\
\alpha_{21}ED_1^{DO} & 0 & \alpha_{23}ED_2^{OD} & \ldots & \alpha_{2n}ED_n^{DO} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\alpha_{n1}ED_1^{DO} & \alpha_{n2}ED_2^{DO} & \ldots & \alpha_{n(n-1)}ED_{n-1}^{DO} & 0
\end{bmatrix}
\]
Where, T_{ij} is the estimated inter-zonal passengers travel between i^{th} zone and j^{th} zone. $(i=1,2,...,n)$ and $(j=1,2,...,n)$; the coefficients $\alpha_{12}, \alpha_{13}, \alpha_{1n}, \ldots, \alpha_{n(n-1)}$ are the factors that are derived from the bus passenger boarding and alighting counts on the bus route as shown below,

$$\alpha_{ij} = P_{ij} * \left[\frac{A_j}{\sum_{m=1}^{n} B_m} \right]$$

(5)

Where, P_{ij} is the ratio of all passengers who alighted in zone j to the ratio of passengers who boarded from zone i to travel up to zone j which is expressed as a percentage. In this study, the value for α_{ij} was investigated based on experience of the route boarding and alighting pattern. $\sum_{m=1}^{n} B_m$ is the cumulative bus passenger boarding up to destination d. A_j is bus passenger alighting in the j^{th} zone.

2.3 Application for a Travel Route

This theoretical approach is used to estimate the inter-zonal travel for the selected travel route. The first step is to determine approximate values for the parameters α_{ij}. The following example illustrates how this can be done.

Estimation of Inter-zonal Bus Passenger Travel on Moratuwa - Colombo bus Route (Example Route Number 101)

The Moratuwa - Colombo bus route (one of the 15 routes observed in this study) plies across three traffic zones and the roadside passenger loading observation points for this routes were located at the Maliban Junction (LOP-1), and Bambalapitiya (LOP-2) as shown in Figure 1. In this example, the observation points were situated ahead of the respective zonal boundaries when buses operate from Moratuwa to Colombo. The observed average daily passenger demands at these two locations were 11,341($LD_{(M:C)}^{M:C}$) and 13,442($LD_{(BP)}^{M:C}$) respectively in the Moratuwa to Colombo direction, and 7,950($LD_{(M:C)}^{C:M}$) and 11,304($LD_{(BP)}^{C:M}$) respectively in the Colombo to Moratuwa direction. The summary of passenger boarding, and alighting on this route is shown in Table 2. This was estimated using a 20 per cent sample from 93 buses operating on this route. These buses were found to make 465 bus trips in both directions during the day of the survey, which covered approximately 95 per cent of the estimated total inter-zonal passenger return trips on this bus route.
Table 2 Passenger Boarding and Alighting Counts (Bus Route Number 101)

<table>
<thead>
<tr>
<th>Location</th>
<th>Colombo to Moratuwa</th>
<th>Moratuwa to Colombo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average passenger</td>
<td>Average passenger</td>
</tr>
<tr>
<td></td>
<td>boardings</td>
<td>alightings</td>
</tr>
<tr>
<td>Within Moratuwa Zone</td>
<td>$B_{(Mo)}^{C,M}=29$</td>
<td>$A_{(Mo)}^{C,M}=67$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maliban Junction (LOP-1)</td>
<td>$B_{(MJ)}^{C,M}=102$</td>
<td>$A_{(MJ)}^{C,M}=61$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within Dehiwala Zone</td>
<td>$B_{(De)}^{C,M}=65$</td>
<td>$A_{(De)}^{C,M}=20$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bambalapitiya (LOP-1)</td>
<td>$B_{(BP)}^{C,M}=78$</td>
<td>$A_{(BP)}^{C,M}=42$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within Colombo Zone</td>
<td>$B_{(Co)}^{C,M}=25$</td>
<td>$A_{(Co)}^{C,M}=17$</td>
</tr>
</tbody>
</table>

As in Table 2, the average passenger boardings per bus within the Moratuwa zone is 55 passengers and alighting is 16, when the buses operate from Moratuwa to Colombo. At the loading observation point (LOP) which is within the next zone (Dehiwela) the boarding is 4 passengers and alighting is 5 passengers.

Calculation 1: Travel from Colombo to Moratuwa.

The loading observation point in the Colombo zone is located at Bambalapitiya (LOP-2), before the Colombo zonal boundary. Then using Equation 1, the inter-zonal travel between Colombo and Dehiwela would be,

$$IPT_{(Co)}^{C,M} = [B_{(Co)}^{C,M} - A_{(Co)}^{C,M} + B_{(BP)}^{C,M} - A_{(BP)}^{C,M}] = 44$$

Similarly, the inter-zonal passenger travel between Dehiwela and Moratuwa would be,

The estimation of total bus passenger travels at the Colombo zonal boundary was,

$$ED_{(Co)}^{C,M} = \frac{1 + \left(B_{(Co)}^{C,M} - A_{(Co)}^{C,M} \right)}{IPT_{(Co)}^{C,M}} \times LD_{(BP)}^{C,M}$$

$$= 13,359\ \text{passengers per day}.$$

The LOP-1, is located before the Dehiwela zonal boundary. Similarly, the estimation of total bus passenger travels at the Dehiwela zonal boundary was,

$$ED_{(De)}^{C,M} = \frac{1 + \left(B_{(De)}^{C,M} - A_{(De)}^{C,M} \right)}{IPT_{(De)}^{C,M}} \times LD_{(MJ)}^{C,M}$$

$$= 10,702\ \text{passengers per day}.$$

Thereafter we make the assumption that $P_{(Colombo\ to\ Dehiwela)}$ is 95% as considered in Equation 5. Then the coefficient $\alpha_{Colombo\ –\ Dehiwela}$ estimates,

$$\alpha_{Colombo\ –\ Dehiwela} = 0.95 \times \left[\frac{A_{(De)}^{C,M} + A_{(MJ)}^{C,M}}{B_{(Co)}^{C,M} + B_{(BP)}^{C,M} + B_{(De)}^{C,M} + B_{(MJ)}^{C,M} + B_{(Mo)}^{C,M}} \right] = 0.257$$
\[(T_{ij})(\text{Colombo-Dehiwela}) = 3,433 \text{ passengers per day} / T(\text{Dehiwala-Moratuwa}) = 776 \text{ passengers per day and} T(\text{Colombo-Moratuwa}) = 9,926 \text{ passengers per day.}\]

Calculation 2: Travel from Moratuwa to Colombo.

In Moratuwa to Colombo bus travel, the loading observation point is located further away from the Moratuwa zonal boundary, then using Equation 1, the inter-zonal travel between Moratuwa and Dehiwela would be,

\[
IPT_{(Mo)}^{M,C} = [B_{Mo}^{M,C} - A_{Mo}^{M,C} + B_{MJ}^{M,C} - A_{MJ}^{M,C}] = 38
\]

(11)

Similarly, the inter-zonal passenger travel between Dehiwela and Colombo would be,

\[
IPT_{(De)}^{M,C} = [B_{Mo}^{M,C} + B_{De}^{M,C} - A_{Mo}^{M,C} - A_{De}^{M,C} + B_{MJ}^{M,C} + B_{BP}^{M,C} - A_{MJ}^{M,C} - A_{BP}^{M,C}] = 28
\]

(12)

Hence, using Equation 3, the estimation of total bus passenger travels at the Moratuwa zonal boundary was,

\[
ED_{Moratuwa}^{M,C} = \left[1 - \frac{B_{Mo}^{M,C} - A_{Mo}^{M,C}}{IPT_{Mo}^{M,C}}\right] \times LD_{MJ}^{M,C} = 11,639 \text{ Passengers per day.}
\]

(13)

Similarly, the estimation of total bus passenger travels at the Dehiwela zonal boundary was,

\[
ED_{Dehiwela}^{M,C} = \left[1 - \frac{B_{De}^{M,C} - A_{De}^{M,C}}{IPT_{De}^{M,C}}\right] \times LD_{BP}^{M,C} = 18,243 \text{ Passengers per day.}
\]

(14)

Assuming the \(P(\text{Moratuwa to Dehiwala})\) is 90% as in Equation 5. Then the coefficient \(\alpha_{\text{Moratuwa–Dehiwala}}\) estimates,

\[
\alpha_{\text{Moratuwa–Dehiwala}} = 0.9 \times \left[\frac{A_{De}^{M,C} + A_{MJ}^{M,C}}{B_{Mo}^{M,C} + B_{MJ}^{M,C} + B_{De}^{M,C} + B_{BP}^{M,C} + B_{Co}^{M,C}}\right] = 0.184
\]

(15)

Similarly, inter-zonal travel \(T(\text{Moratuwa-Dehiwela}) = 2,142 \text{ passengers per day and} T(\text{Moratuwa-Colombo}) = 9,497 \text{ passengers per day and} T(\text{Dehiwela-Colombo}) = 8,746 \text{ passengers per day.}\)

The analysis was carried out for all of the other bus routes and estimates were thereafter made using the summation of all the \(T_{ij}\) travels as shown in equation (16) relevant to the travel from origin \(o\) to destination \(d\) to obtain the inter-zonal bus demand \((TT_{ij})\) for that zonal pair.

\[
TT_{ij} = \sum_{j=1}^{n} T_{ij}
\]

(16)

The estimated inter-zonal demand and the observations are tabulated in Table 3.
3. VALIDATION OF O-D MATRIX

Validation is an important step to check the accuracy of the theoretical approach of estimation before wider application. Table 3, shows the comparison between the estimated travel demand and the estimated observations, which are computed from the sample travel data. The observed travel volumes were from data collected from two different transport development studies done on this corridor (OCH,2000 ; CMRSP,1997),due to non-availability of the complete sets of data for a single study.

Table 3. Validation Results for Inter-zonal Travel Estimates.

<table>
<thead>
<tr>
<th>From Zone</th>
<th>To Zone</th>
<th>Trip Length (km.)</th>
<th>Validated Year -2004</th>
<th>Obs.</th>
<th>TT$_{ij}$</th>
<th>% error of TT$_{ij}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colombo</td>
<td>Dehiwela</td>
<td>10.0</td>
<td></td>
<td>59,305</td>
<td>68,952</td>
<td>-16.27</td>
</tr>
<tr>
<td>Colombo</td>
<td>Moratuwa</td>
<td>20.0</td>
<td></td>
<td>27,290</td>
<td>31,515</td>
<td>-15.48</td>
</tr>
<tr>
<td>Colombo</td>
<td>Kalutara</td>
<td>43.0</td>
<td></td>
<td>5,234</td>
<td>4,871</td>
<td>6.94</td>
</tr>
<tr>
<td>Dehiwela</td>
<td>Moratuwa</td>
<td>40.0</td>
<td></td>
<td>10,157</td>
<td>8,618</td>
<td>15.15</td>
</tr>
<tr>
<td>Dehiwela</td>
<td>Panadura</td>
<td>17.0</td>
<td></td>
<td>7,896</td>
<td>8,047</td>
<td>-1.91</td>
</tr>
<tr>
<td>Dehiwela</td>
<td>Kalutara</td>
<td>33.0</td>
<td></td>
<td>2,783</td>
<td>2,545</td>
<td>8.55</td>
</tr>
<tr>
<td>Moratuwa</td>
<td>Kalutara</td>
<td>23.0</td>
<td></td>
<td>4,215</td>
<td>3,675</td>
<td>12.81</td>
</tr>
</tbody>
</table>

Obs. =Observation TT$_{ij}$ = Bus demand from i^{th} zone to j^{th} zone.

Table 3, shows that the highest flow occurs for inter-zonal travel of the shorter distances centred around Colombo. Estimated demand for Colombo - Dehiwala and Colombo - Moratuwa travel is significantly more than the observed demand. The high negative and positive error terms indicate that a larger sample could have yielded a better accuracy. However with the least accuracy at +/-15% there is sufficient confirmation that the theoretical approach has an acceptable level of accuracy for use in transport planning studies.

5. CONCLUSIONS

The paper documents the formulation and calibration of a method of calculating a travel O-D matrix for a transport corridor from screenline passenger loading counts, and boarding and alighting counts. This has been verified through a validation returning individual errors of below 15 percent. The deference of this method from other methods is that this method overcomes limitations posed by overloading of buses, and instances when bus ticket information and bus dispatching information are not available for estimating an O-D matrix. This approach enables estimating inter-zonal travel length in a corridor to a high level of accuracy where a number of buses ply across a number of different travel zones. This method is useful for the bus industry because the compilation of such travel information with minimal survey observations can save both money and time.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial assistance provided by the Asian Development Bank to conduct this research, and the facilities provided by the Department of Civil Engineering, University of Moratuwa, Sri Lanka.
REFERENCES

